Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(12): 101306, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38052214

RESUMEN

Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.


Asunto(s)
Caquexia , Neoplasias , Humanos , Ratones , Animales , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Tacrolimus/metabolismo , Tacrolimus/farmacología , Músculo Esquelético/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Neoplasias/patología
2.
Ann Surg ; 278(6): e1313-e1326, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450698

RESUMEN

OBJECTIVES: To test whether mitochondrial transplantation (MITO) mitigates damage in 2 models of acute kidney injury (AKI). BACKGROUND: MITO is a process where exogenous isolated mitochondria are taken up by cells. As virtually any morbid clinical condition is characterized by mitochondrial distress, MITO may find a role as a treatment modality in numerous clinical scenarios including AKI. METHODS: For the in vitro experiments, human proximal tubular cells were damaged and then treated with mitochondria or placebo. For the ex vivo experiments, we developed a non-survival ex vivo porcine model mimicking the donation after cardiac death renal transplantation scenario. One kidney was treated with mitochondria, although the mate organ received placebo, before being perfused at room temperature for 24 hours. Perfusate samples were collected at different time points and analyzed with Raman spectroscopy. Biopsies taken at baseline and 24 hours were analyzed with standard pathology, immunohistochemistry, and RNA sequencing analysis. RESULTS: In vitro, cells treated with MITO showed higher proliferative capacity and adenosine 5'-triphosphate production, preservation of physiological polarization of the organelles and lower toxicity and reactive oxygen species production. Ex vivo, kidneys treated with MITO shed fewer molecular species, indicating stability. In these kidneys, pathology showed less damage whereas RNAseq analysis showed modulation of genes and pathways most consistent with mitochondrial biogenesis and energy metabolism and downregulation of genes involved in neutrophil recruitment, including IL1A, CXCL8, and PIK3R1. CONCLUSIONS: MITO mitigates AKI both in vitro and ex vivo.


Asunto(s)
Lesión Renal Aguda , Trasplante de Riñón , Daño por Reperfusión , Humanos , Porcinos , Animales , Riñón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo
3.
Nat Commun ; 14(1): 1849, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012289

RESUMEN

Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NAD+ in the pathophysiology of human cancer cachexia. Overall, our results propose NAD+ metabolism as a therapy target for cachectic cancer patients.


Asunto(s)
Neoplasias , Niacina , Humanos , Ratones , Animales , Niacina/farmacología , Niacina/uso terapéutico , Niacina/metabolismo , NAD/metabolismo , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Niacinamida/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Músculo Esquelético/metabolismo
4.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36230841

RESUMEN

At diagnosis, about 35% of pancreatic cancers are at the locally invasive yet premetastatic stage. Surgical resection is not a treatment option, leaving patients with a largely incurable disease that often evolves to the polymetastatic stage despite chemotherapeutic interventions. In this preclinical study, we hypothesized that pancreatic cancer metastasis can be prevented by inhibiting mitochondrial redox signaling with MitoQ, a mitochondria-targeted antioxidant. Using four different cancer cell lines, we report that, at clinically relevant concentrations (100-500 nM), MitoQ selectively repressed mesenchymal pancreatic cancer cell respiration, which involved the inhibition of the expression of PGC-1α, NRF1 and a reduced expression of electron-transfer-chain complexes I to III. MitoQ consequently decreased the mitochondrial membrane potential and mitochondrial superoxide production by these cells. Phenotypically, MitoQ further inhibited pancreatic cancer cell migration, invasion, clonogenicity and the expression of stem cell markers. It reduced by ~50% the metastatic homing of human MIA PaCa-2 cells in the lungs of mice. We further show that combination treatments with chemotherapy are conceivable. Collectively, this study indicates that the inhibition of mitochondrial redox signaling is a possible therapeutic option to inhibit the metastatic progression of pancreatic cancer.

5.
Cancers (Basel) ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35326639

RESUMEN

In oncology, the occurrence of distant metastases often marks the transition from curative to palliative care. Such outcome is highly predictable for breast cancer patients, even if tumors are detected early, and there is no specific treatment to prevent metastasis. Previous observations indicated that cancer cell mitochondria are bioenergetic sensors of the tumor microenvironment that produce superoxide to promote evasion. Here, we tested whether mitochondria-targeted antioxidant MitoQ is capable to prevent metastasis in the MDA-MB-231 model of triple-negative human breast cancer in mice and in the MMTV-PyMT model of spontaneously metastatic mouse breast cancer. At clinically relevant doses, we report that MitoQ not only prevented metastatic take and dissemination, but also local recurrence after surgery. We further provide in vitro evidence that MitoQ does not interfere with conventional chemotherapies used to treat breast cancer patients. Since MitoQ already successfully passed Phase I safety clinical trials, our preclinical data collectively provide a strong incentive to test this drug for the prevention of cancer dissemination and relapse in clinical trials with breast cancer patients.

6.
Cancers (Basel) ; 14(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35326667

RESUMEN

To successfully generate distant metastases, metastatic progenitor cells must simultaneously possess mesenchymal characteristics, resist to anoïkis, migrate and invade directionally, resist to redox and shear stresses in the systemic circulation, and possess stem cell characteristics. These cells primarily originate from metabolically hostile areas of the primary tumor, where oxygen and nutrient deprivation, together with metabolic waste accumulation, exert a strong selection pressure promoting evasion. Here, we followed the hypothesis according to which metastasis as a whole implies the existence of metabolic sensors. Among others, mitochondria are singled out as a major source of superoxide that supports the metastatic phenotype. Molecularly, stressed cancer cells increase mitochondrial superoxide production, which activates the transforming growth factor-ß pathway through src directly within mitochondria, ultimately activating focal adhesion kinase Pyk2. The existence of mitochondria-targeted antioxidants constitutes an opportunity to interfere with the metastatic process. Here, using aggressive triple-negative and HER2-positive human breast cancer cell lines as models, we report that MitoQ inhibits all the metastatic traits that we tested in vitro. Compared to other mitochondria-targeted antioxidants, MitoQ already successfully passed Phase I safety clinical trials, which provides an important incentive for future preclinical and clinical evaluations of this drug for the prevention of breast cancer metastasis.

7.
EMBO Rep ; 23(4): e53746, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35199910

RESUMEN

Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer-induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor-bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor-bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer-induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.


Asunto(s)
Caquexia , Neoplasias , Animales , Caquexia/etiología , Caquexia/metabolismo , Suplementos Dietéticos , Humanos , Hierro/metabolismo , Ratones , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
8.
J Cachexia Sarcopenia Muscle ; 12(1): 70-90, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33350058

RESUMEN

BACKGROUND: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS: We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS: In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 µM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS: We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.


Asunto(s)
Caquexia , Colestasis , Inflamación , Neoplasias , Animales , Caquexia/etiología , Colestasis/etiología , Citocinas , Humanos , Inflamación/complicaciones , Ratones , Neoplasias/complicaciones
9.
Br J Cancer ; 124(1): 207-216, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257841

RESUMEN

BACKGROUND: Tumour acidosis is considered to play a central role in promoting cancer invasion and migration, but few studies have investigated in vivo how tumour pH correlates with cancer invasion. This study aims to determine in vivo whether tumour acidity is associated with cancer metastatic potential. METHODS: Breast cancer cell lines with different metastatic potentials have been characterised for several markers of aggressiveness and invasiveness. Murine tumour models have been developed and assessed for lung metastases and tumour acidosis has been assessed in vivo by a magnetic resonance imaging-based chemical exchange saturation transfer (CEST) pH imaging approach. RESULTS: The higher metastatic potential of 4T1 and TS/A primary tumours, in comparison to the less aggressive TUBO and BALB-neuT ones, was confirmed by the highest expression of cancer cell stem markers (CD44+CD24-), highlighting their propensity to migrate and invade, coinciding with the measurement obtained by in vitro assays. MRI-CEST pH imaging successfully discriminated the more aggressive 4T1 and TS/A tumours that displayed a more acidic pH. Moreover, the observed higher tumour acidity was significantly correlated with an increased number of lung metastases. CONCLUSIONS: The findings of this study indicate that the extracellular acidification is associated with the metastatic potential.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Invasividad Neoplásica/patología , Animales , Línea Celular Tumoral , Femenino , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos BALB C
10.
Cells ; 9(12)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287315

RESUMEN

Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.


Asunto(s)
Hierro/metabolismo , Neoplasias/metabolismo , Animales , Antioxidantes/metabolismo , Proliferación Celular/fisiología , Homeostasis/fisiología , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
12.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202621

RESUMEN

Cachexia is a complication of dismal prognosis, which often represents the last step of several chronic diseases. For this reason, the comprehension of the molecular drivers of such a condition is crucial for the development of management approaches. Importantly, cachexia is a syndrome affecting various organs, which often results in systemic complications. To date, the majority of the research on cachexia has been focused on skeletal muscle, muscle atrophy being a pivotal cause of weight loss and the major feature associated with the steep reduction in quality of life. Nevertheless, defining the impact of cachexia on other organs is essential to properly comprehend the complexity of such a condition and potentially develop novel therapeutic approaches.


Asunto(s)
Caquexia , Músculo Esquelético , Atrofia Muscular , Calidad de Vida , Caquexia/metabolismo , Caquexia/patología , Caquexia/terapia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/terapia
13.
EMBO Mol Med ; 12(10): e11210, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32885605

RESUMEN

Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2-like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti-tumor, M1-like, tumor-associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1-like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well-tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Macrófagos , Aminobutiratos , Animales , Femenino , Humanos , Mediadores de Inflamación , Ratones
14.
Cell Biochem Biophys ; 78(3): 249-254, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32488461

RESUMEN

It has been proposed that a mitochondrial switch involving a high mitochondrial superoxide production is associated with cancer metastasis. We here report an EPR analysis of ROS production using cyclic hydroxylamines in superinvasive SiHa-F3 compared with less invasive SiHa wild-type human cervix cancer cells. Using the CMH probe, no significant difference was observed in the overall level of ROS between SiHa and SiHa-F3 cells. However, using mitochondria-targeted cyclic hydroxylamine probe mitoTEMPO-H, we detected a significantly higher mitochondrial ROS content in SiHa-F3 compared with the wild-type SiHa cells. To investigate the nature of mitochondrial ROS, we overexpressed superoxide dismutase 2, a SOD isoform exclusively localized in mitochondria, in SiHa-F3 superinvasive cells. A significantly lower signal was detected in SiHa-F3 cells overexpressing SOD2 compared with SiHa-F3. Despite some limitations discussed in the paper, our EPR results suggest that mitochondrial ROS (at least partly superoxide) are produced to a larger extent in superinvasive cancer cells compared with less invasive wild-type cancer cells.


Asunto(s)
Mitocondrias/metabolismo , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Línea Celular Tumoral , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Humanos , Hidroxilaminas/química , Invasividad Neoplásica , Compuestos Organofosforados/química , Piperidinas/química , Superóxido Dismutasa/metabolismo , Superóxidos/análisis
15.
Mol Metab ; 33: 48-66, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31395464

RESUMEN

BACKGROUND: Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. SCOPE OF REVIEW: Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. MAJOR CONCLUSIONS: Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT-/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/genética , Simportadores/genética , Animales , Ciclo del Ácido Cítrico/genética , Metabolismo Energético/genética , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Neoplasias/genética , Neoplasias/patología
16.
Front Oncol ; 9: 1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850217

RESUMEN

The metabolism of cancer cells differs from that of their normal counterparts in a spectrum of attributes, including imbalances in diverse metabolic arms and pathways, metabolic plasticity and extent of adaptive responses, levels, and activities of metabolic enzymes and their upstream regulators and abnormal fluxes of metabolic intermediates and products. These attributes endow cancer cells with the ability to survive stressors of the tumor microenvironment and enable them to landscape and exploit the host terrain, thereby facilitating cancer progression and therapy resistance. Understanding the molecular and physiological principles of cancer metabolism is one of the key prerequisites for the development of better anticancer treatments. Therefore, various aspects of cancer metabolism were addressed at the 5th annual meeting of the International Society of Cancer Metabolism (ISCaM) in Bratislava, Slovakia, on October 17-20, 2018. The meeting presentations and discussions were traditionally focused on mechanistic, translational, and clinical characteristics of metabolism and pH control in cancer, at the level of molecular pathways, cells, tissues, and organisms. In order to reflect major healthcare challenges of the current era, ISCaM has extended its scope to metabolic disorders contributing to cancer, as well as to opportunities for their prevention, intervention, and therapeutic targeting.

17.
Cancer Metastasis Rev ; 38(1-2): 189-203, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30820778

RESUMEN

In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.


Asunto(s)
Mitocondrias/metabolismo , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Humanos , Mitocondrias/patología , Neoplasias/patología , Fosforilación Oxidativa
18.
Methods Mol Biol ; 1928: 337-352, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30725463

RESUMEN

Cancer cachexia is a metabolic disease characterized by a negative energy balance associated with systemic weight loss and poor quality of life.In particular, skeletal muscle, which represents almost 50% of the total body mass, is strongly affected, and metabolic alterations therein (e.g., insulin resistance and mitochondrial dysfunction) can eventually support tumor growth by facilitating nutrient scavenging by the growing mass. Interestingly, metabolic interventions on wasting muscle have been proven to be protective, advocating for the importance of metabolic regulation in the wasting muscle.Here, we will briefly define the current knowledge of metabolic regulation in cachexia and provide a protocol to grow and differentiate in vitro myotubes for the assessment of mitochondrial metabolism during cachexia.


Asunto(s)
Caquexia/etiología , Caquexia/metabolismo , Metabolismo Energético , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Humanos , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patología , Atrofia Muscular , Neoplasias/metabolismo , Oxígeno/metabolismo
19.
Front Oncol ; 8: 329, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30338239

RESUMEN

Tumors are metabolic entities wherein cancer cells adapt their metabolism to their oncogenic agenda and microenvironmental influences. Metabolically different cancer cell subpopulations collaborate to optimize nutrient delivery with respect to immediate bioenergetic and biosynthetic needs. They can also metabolically exploit host cells. These metabolic networks are directly linked with cancer progression, treatment, resistance, and relapse. Conversely, metabolic alterations in cancer are exploited for anticancer therapy, imaging, and stratification for personalized treatments. These topics were addressed at the 4th annual meeting of the International Society of Cancer Metabolism (ISCaM) in Bertinoro, Italy, on 19-21 October 2017.

20.
Elife ; 72018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29911570

RESUMEN

Energy metabolism is essential for T cell function. However, how persistent antigenic stimulation affects T cell metabolism is unknown. Here, we report that long-term in vivo antigenic exposure induced a specific deficit in numerous metabolic enzymes. Accordingly, T cells exhibited low basal glycolytic flux and limited respiratory capacity. Strikingly, blockade of inhibitory receptor PD-1 stimulated the production of IFNγ in chronic T cells, but failed to shift their metabolism towards aerobic glycolysis, as observed in effector T cells. Instead, chronic T cells appeared to rely on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to produce ATP for IFNγ synthesis. Check-point blockade, however, increased mitochondrial production of superoxide and reduced viability and effector function. Thus, in the absence of a glycolytic switch, PD-1-mediated inhibition appears essential for limiting oxidative metabolism linked to effector function in chronic T cells, thereby promoting survival and functional fitness.


Asunto(s)
Antígeno B7-H1/genética , Linaje de la Célula/inmunología , Interferón gamma/genética , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/inmunología , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/biosíntesis , Animales , Anticuerpos Monoclonales/farmacología , Antimetabolitos Antineoplásicos/farmacología , Antígeno B7-H1/inmunología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Diazooxonorleucina/farmacología , Compuestos Epoxi/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucólisis/efectos de los fármacos , Interferón gamma/antagonistas & inhibidores , Interferón gamma/inmunología , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Subunidad gamma Común de Receptores de Interleucina/inmunología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Oligomicinas/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/trasplante , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...